skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stern, Charlotte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer. This mechanically interlocked 2D polymer is formed as a layered solid that is readily exfoliated in common organic solvents, enabling spectroscopic characterization and atomic-resolution imaging using advanced electron microscopy techniques. The 2D mechanically interlocked polymer is easily prepared on multigram scales, which, along with its solution processibility, enables the facile fabrication of composite fibers with Ultem that exhibit enhanced stiffness and strength. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  2. Abstract Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution. 
    more » « less
  3. Electron donor–acceptor co-crystals are receiving increasing interest because of their many useful optoelectronic properties. While the steady-state properties of many different co-crystals have been characterized, very few studies have addressed how crystal morphology affects the dynamics of charge transfer (CT) exciton formation, migration, and decay, which are often critical to their performance in device structures. Here we show that co-crystallization of a pyrene (Pyr) electron donor with either N , N ′-bis(2,6-diisopropylphenyl)- or N , N ′-bis(3′-pentyl)-perylene-3,4:9,10-bis(dicarboximide) (diisoPDI or C 5 PDI) electron acceptors, respectively, yields mixed π-stacked Pyr–diisoPDI or Pyr–C 5 PDI donor–acceptor co-crystals. Femtosecond transient absorption microscopy is used to determine the CT exciton dynamics in these single crystals. Fitting the data to a one-dimensional charge transfer CT exciton diffusion model reveals a diffusion constant that is two orders of magnitude higher in the Pyr–diisoPDI co-crystal compared to the Pyr–C 5 PDI co-crystal. By correlating the co-crystal structures to their distinct excited-state dynamics, the effects of each mixed stacked structure on the exciton dynamics and the mechanisms of CT exciton diffusion are elucidated. 
    more » « less